2022-05-18
Node
0

目录

一段话讲清楚I/O多路复用
IO 多路复用实现机制
概念说明
用户空间 / 内核空间
进程切换
进程阻塞
文件描述符
缓存I/O
什么是IO多路复用?
为什么有IO多路复用机制?
同步阻塞(BIO)
同步非阻塞(NIO)
IO多路复用
IO多路复用的三种实现
select
select缺点
poll
poll缺点
epoll
epoll缺点
select/poll/epoll之间的区别
支持一个进程所能打开的最大连接数
FD剧增后带来的IO效率问题
消息传递方式
总结
参考

Node.js是一个事件驱动、非阻塞I/O模型的JavaScript运行时环境,拥有高性能的I/O操作能力。其中,多路复用是Node.js实现高性能I/O操作的核心机制之一。它允许单个线程同时处理多个I/O请求,并在I/O完成时通知应用程序。在本文中,我们将深入探讨Node.js中的I/O多路复用机制,包括它的原理、实现方式、优势、适用场景。

一段话讲清楚I/O多路复用

下面举一个例子,模拟一个tcp服务器处理30个客户socket。 假设你是一个老师,让30个学生解答一道题目,然后检查学生做的是否正确,你有下面几个选择:

  1. 第一种选择:按顺序逐个检查,先检查A,然后是B,之后是C、D。。。这中间如果有一个学生卡主,全班都会被耽误。 这种模式就好比,你用循环挨个处理socket,根本不具有并发能力。
  2. 第二种选择:你创建30个分身,每个分身检查一个学生的答案是否正确。 这种类似于为每一个用户创建一个进程或者线程处理连接。
  3. 第三种选择,你站在讲台上等,谁解答完谁举手。这时C、D举手,表示他们解答问题完毕,你下去依次检查C、D的答案,然后继续回到讲台上等。此时E、A又举手,然后去处理E和A。。。 这种就是IO复用模型,Linux下的select、poll和epoll就是干这个的。将用户socket对应的fd注册进epoll,然后epoll帮你监听哪些socket上有消息到达,这样就避免了大量的无用操作。此时的socket应该采用非阻塞模式。 这样,整个过程只在调用select、poll、epoll这些调用的时候才会阻塞,收发客户消息是不会阻塞的,整个进程或者线程就被充分利用起来,这就是事件驱动,所谓的reactor模式。

IO 多路复用实现机制

概念说明

IO 多路复用有三种实现,在介绍select、poll、epoll之前,首先介绍一下Linux操作系统中基础的概念

  • 用户空间和内核空间
  • 进程切换
  • 进程的阻塞
  • 文件描述符
  • 缓存 I/O

用户空间 / 内核空间

现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。 操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操作系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。

针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。

进程切换

为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的,并且进程切换是非常耗费资源的。

从一个进程的运行转到另一个进程上运行,这个过程中经过下面这些变化:

  1. 保存处理机上下文,包括程序计数器和其他寄存器。
  2. 更新PCB信息。
  3. 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
  4. 选择另一个进程执行,并更新其PCB。
  5. 更新内存管理的数据结构。
  6. 恢复处理机上下文。

进程阻塞

正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得了CPU资源),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的。

文件描述符

文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。 文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。

缓存I/O

缓存I/O又称为标准I/O,大多数文件系统的默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存中,即数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。

缓存 I/O 的缺点:

数据在传输过程中需要在应用程序地址空间和内核进行多次数据拷贝操作,这些数据拷贝操作所带来的 CPU 以及内存开销是非常大的。

什么是IO多路复用?

  • IO 多路复用是一种同步IO模型,实现一个线程可以监视多个文件句柄;
  • 一旦某个文件句柄就绪,就能够通知应用程序进行相应的读写操作;
  • 没有文件句柄就绪就会阻塞应用程序,交出CPU。

多路是指网络连接,复用指的是同一个线程

为什么有IO多路复用机制?

没有IO多路复用机制时,有BIO、NIO两种实现方式,但它们都有一些问题

同步阻塞(BIO)

  • 服务端采用单线程,当 accept 一个请求后,在 recvsend 调用阻塞时,将无法 accept 其他请求(必须等上一个请求处理 recvsend 完 )(无法处理并发)
js
// 伪代码描述 while (true) { // accept阻塞 client_fd = accept(listen_fd); fds.append(client_fd); for (fd in fds) { // recv阻塞(会影响上面的accept) if (recv(fd)) { // logic } } } 复制代码
  • 服务端采用多线程,当 accept 一个请求后,开启线程进行 recv,可以完成并发处理,但随着请求数增加需要增加系统线程,大量的线程占用很大的内存空间,并且线程切换会带来很大的开销,10000个线程真正发生读写实际的线程数不会超过20%,每次accept都开一个线程也是一种资源浪费。
js
// 伪代码描述 while(true) { // accept阻塞 client_fd = accept(listen_fd) // 开启线程read数据(fd增多导致线程数增多) new Thread func() { // recv阻塞(多线程不影响上面的accept) if (recv(fd)) { // logic } } } 复制代码

同步非阻塞(NIO)

  • 服务器端当 accept 一个请求后,加入 fds 集合,每次轮询一遍 fds 集合 recv (非阻塞)数据,没有数据则立即返回错误,每次轮询所有 fd (包括没有发生读写实际的 fd)会很浪费 CPU。
js
// 伪代码描述 while(true) { // accept非阻塞(cpu一直忙轮询) client_fd = accept(listen_fd) if (client_fd != null) { // 有人连接 fds.append(client_fd) } else { // 无人连接 } for (fd in fds) { // recv非阻塞 setNonblocking(client_fd) // recv 为非阻塞命令 if (len = recv(fd) && len > 0) { // 有读写数据 // logic } else { 无读写数据 } } } 复制代码

IO多路复用

服务器端采用单线程通过 select/poll/epoll 等系统调用获取 fd 列表,遍历有事件的 fd 进行 accept/recv/send ,使其能支持更多的并发连接请求。

js
// 伪代码描述 while(true) { // 通过内核获取有读写事件发生的fd,只要有一个则返回,无则阻塞 // 整个过程只在调用select、poll、epoll这些调用的时候才会阻塞,accept/recv是不会阻塞 for (fd in select(fds)) { if (fd == listen_fd) { client_fd = accept(listen_fd) fds.append(client_fd) } elseif (len = recv(fd) && len != -1) { // logic } } }

IO多路复用的三种实现

  • select
  • poll
  • epoll

select

它仅仅知道了,有I/O事件发生了,却并不知道是哪那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。所以select具有O(n)的无差别轮询复杂度,同时处理的流越多,无差别轮询时间就越长。

select缺点

select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:

  • 单个进程所打开的FD是有限制的,通过 FD_SETSIZE 设置,默认1024 ;
  • 每次调用 select,都需要把 fd 集合从用户态拷贝到内核态,这个开销在 fd 很多时会很大;

需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大

  • 对 socket 扫描时是线性扫描,采用轮询的方法,效率较低(高并发)

当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。

poll

poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态, 但是它没有最大连接数的限制,原因是它是基于链表来存储的.

poll缺点

它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有缺点:

  • 每次调用 poll ,都需要把 fd 集合从用户态拷贝到内核态,这个开销在 fd 很多时会很大;
  • 对 socket 扫描是线性扫描,采用轮询的方法,效率较低(高并发时)

epoll

epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll会把哪个流发生了怎样的I/O事件通知我们。所以我们说epoll实际上是**事件驱动(每个事件关联上fd)**的,此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1)) epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。

epoll缺点

  • epoll只能工作在 linux 下

select/poll/epoll之间的区别

select,poll,epoll都是IO多路复用的机制。I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。

epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般操作系统均有实现

epoll是Linux目前大规模网络并发程序开发的首选模型。在绝大多数情况下性能远超select和poll。目前流行的高性能web服务器Nginx正式依赖于epoll提供的高效网络套接字轮询服务。但是,在并发连接不高的情况下,多线程+阻塞I/O方式可能性能更好。

支持一个进程所能打开的最大连接数

  • select:单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是32_32,同理64位机器上FD_SETSIZE为32_64),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。
  • poll:poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的。
  • epoll:虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接。

FD剧增后带来的IO效率问题

  • select:因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降性能问题”。
  • poll:同上
  • epoll:因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。

消息传递方式

  • select:内核需要将消息传递到用户空间,都需要内核拷贝动作
  • poll:同上
  • epoll:epoll通过内核和用户空间共享一块内存来实现的。

总结

select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。

select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。

参考

彻底理解 IO 多路复用实现机制

本文作者:BARM

本文链接:

版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!